Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Experimental & Molecular Medicine ; : 302-309, 2010.
Article in English | WPRIM | ID: wpr-164515

ABSTRACT

Serum amyloid A (SAA) induced CCL2 production via a pertussis toxin (PTX)-insensitive pathway in human umbilical vein endothelial cells (HUVECs). SAA induced the activation of three MAPKs (ERK, p38 MAPK, and JNK), which were completely inhibited by knock-down of formyl peptide receptor 2 (FPR2). Inhibition of p38 MAPK and JNK by their specific inhibitors (SB203580 and SP600125), or inhibition by a dominant negative mutant of p38 MAPK dramatically decreased SAA-induced CCL2 production. Inactivation of Gi protein(s) by PTX inhibited the activation of SAA-induced ERK, but not p38 MAPK or JNK. The results indicate that SAA stimulates FPR2-mediated activation of p38 MAPK and JNK, which are independent of a PTX-sensitive G-protein and are essential for SAA-induced CCL2 production.

2.
Experimental & Molecular Medicine ; : 325-333, 2009.
Article in English | WPRIM | ID: wpr-136589

ABSTRACT

Serum amyloid A (SAA) has been regarded as an important mediator of inflammatory responses. The effect of several formyl peptide receptor-like 1 (FPRL1) ligands on the production of IL-8 by SAA was investigated in human neutrophils. Among the ligands tested, LL-37 was found to specifically inhibit SAA-induced IL-8 production in transcriptional and post-transcriptional levels. Since SAA stimulated IL-8 production via ERK and p38 MAPK in human neutrophils, we tested the effect of LL-37 on SAA induction for these two MAPKs. LL-37 caused a dramatic inhibition of ERK and p38 MAPK activity, which is induced by SAA. LL-37 was also found to inhibit SAA-stimulated neutrophil chemotactic migration. Further, the LL-37-induced inhibitory effect was mediated by FPRL1. Our findings indicate that LL-37 is expected to be useful in the inhibition of SAA signaling and for the development of drugs against SAA-related inflammatory diseases.


Subject(s)
Animals , Humans , Rats , Antimicrobial Cationic Peptides/pharmacology , Cell Line, Tumor , Cell Movement , Chemotaxis, Leukocyte , Interleukin-8/biosynthesis , MAP Kinase Kinase Kinases/metabolism , Neutrophils/drug effects , Proto-Oncogene Proteins/metabolism , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/metabolism , Serum Amyloid A Protein/antagonists & inhibitors , Signal Transduction , Transcription, Genetic
3.
Experimental & Molecular Medicine ; : 325-333, 2009.
Article in English | WPRIM | ID: wpr-136588

ABSTRACT

Serum amyloid A (SAA) has been regarded as an important mediator of inflammatory responses. The effect of several formyl peptide receptor-like 1 (FPRL1) ligands on the production of IL-8 by SAA was investigated in human neutrophils. Among the ligands tested, LL-37 was found to specifically inhibit SAA-induced IL-8 production in transcriptional and post-transcriptional levels. Since SAA stimulated IL-8 production via ERK and p38 MAPK in human neutrophils, we tested the effect of LL-37 on SAA induction for these two MAPKs. LL-37 caused a dramatic inhibition of ERK and p38 MAPK activity, which is induced by SAA. LL-37 was also found to inhibit SAA-stimulated neutrophil chemotactic migration. Further, the LL-37-induced inhibitory effect was mediated by FPRL1. Our findings indicate that LL-37 is expected to be useful in the inhibition of SAA signaling and for the development of drugs against SAA-related inflammatory diseases.


Subject(s)
Animals , Humans , Rats , Antimicrobial Cationic Peptides/pharmacology , Cell Line, Tumor , Cell Movement , Chemotaxis, Leukocyte , Interleukin-8/biosynthesis , MAP Kinase Kinase Kinases/metabolism , Neutrophils/drug effects , Proto-Oncogene Proteins/metabolism , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/metabolism , Serum Amyloid A Protein/antagonists & inhibitors , Signal Transduction , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL